
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Kotlin Flow

 Using Kotlin Flow in Jetpack Compose

© 2024 Arthur Hoskey. All
rights reserved.

Normal List Collection

Normal List Collection

 Stores multiple pieces of data.

 Has functionality to add/remove data.

 If a client of a collection needs to know if new data
has been added they need to iterate through the
collection.

© 2024 Arthur Hoskey. All
rights reserved.

Normal List Collection

1, 2, 3

Generate and Use a Normal List

Generate and Use a Normal List
 The code below has a function to create a list and a function to use a list.

fun normalListGenerator(): List<Int> {

 val nums = mutableListOf<Int>()

 nums.add(1)

 nums.add(2)

 nums.add(3)

 return nums

}

fun testNormalList() {

 val normalList = normalListGenerator()

 for (i in normalList) {

 println(i)

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Returns a normal list

(all values are returned at once)

Gets a normal list. All

values are returned at

one time.

Add data to the list

one item at a time

Return type is List<Int>

Generate Normal List with a Delay

Generate Normal List with a Delay
 A delay is added before adding each num. This code was run in a ViewModel.
suspend fun normalListDelayGenerator(): List<Int> {

 val nums = mutableListOf<Int>()

 delay(1000)

 nums.add(1)

 delay(1000)

 nums.add(2)

 delay(1000)

 nums.add(3)

 return nums

}

fun testNormalListDelay(){

 println("Getting list")

 viewModelScope.launch {

 val normalList = normalListDelayGenerator()

 for (i in normalList) {

 println(i)

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

IMPORTANT!!!

All values are returned at once.

The function does not return

the list until all the delays have

occurred. There will be a 3

second delay then all number

will appear at once.

There is a delay

before adding

each number

Try It Out

To try this out create a view model

class and copy the following code in

it. In the main screen composable,

get a view model instance and call

testNormalListDelay. Data will be

displayed in the Logcat window.

Kotlin Flow

Kotlin Flow

 A Kotlin Flow is like a collection, but the values are returned as
they appear in the flow (not all at once).

 When using flows, there is a "producer" for the flow and a
"consumer" for the flow.

 The producer puts data into the flow.

 The consumer reads data from the flow.

 Here is a link describing flows:

https://developer.android.com/kotlin/flow

© 2024 Arthur Hoskey. All
rights reserved.

Producer

Puts data in the flow

Flow

Consumer

Read data from the flow

https://developer.android.com/kotlin/flow

Hot vs Cold Flow

Hot vs Cold Flow

 Cold Flow
◦ A cold flow must have a terminal operation be called on it

before values can be taken from it (collect is a terminal
operation). This means it needs a "consumer" to start getting
values from it.

◦ A basic Kotlin Flow is cold.

◦ For example: Flow<Int>

 Hot Flow
◦ A hot flow is usable immediately. It has data there and ready

to be used regardless of whether or not a consumer is there.

◦ A StateFlow is hot.

◦ For example: StateFlow<Int>

© 2024 Arthur Hoskey. All
rights reserved.

Flow

 Now on to basic flows (cold)…

© 2024 Arthur Hoskey. All
rights reserved.

Adding Data to a Flow

Adding Data to a Flow (Cold Flow)

 Call emit from within a flow builder to add data to the flow
(this is similar to add in a normal list).

 flow { } is a flow builder.

 A flow builder is executed in a coroutine (the coroutine
functionality is built into the flow builder).

© 2024 Arthur Hoskey. All
rights reserved.

Producer

fun myFlowGenerator():
Flow<Int> = flow {

 emit(111)
 emit(222)

} Flow

Consumer

Read data from the flow

222 111

111 is added to the

flow then 222 is

added to the flow

111 goes

through first

Function to Generate a Flow

Flow Builder - Function to Generate a Flow (Producer)
 A flow builder is used to put values into a flow.

 Values are added to the flow using emit.

 As soon as a value is added to the flow it is usable.

 A flow builder (flow { } block) is used to create the flow. Code inside the flow
builder can be suspended.

 The code inside the flow builder only runs when the flow is collected. The code
inside the flow builder runs every time the flow is collected.

fun myFlowGenerator(): Flow<Int> = flow {

 for (i in 1..3) {

 emit(i)

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Put values in the flow using emit. Calling emit

once puts one value in the flow. This loop calls

emit three times putting the values 1, 2, and 3 in

the flow.

The flow { } block is the flow builder.

Code in a flow builder can be

suspended (code in the flow builder is

automatically run in a coroutine)

This Flow contains Int

values

Collecting Data from a Flow

Collecting Data from a Flow

 Call collect on the flow to read data from it.

© 2024 Arthur Hoskey. All
rights reserved.

Producer

fun myFlowGenerator():
Flow<Int> = flow {

 for (i in 1..3) {
 emit(i)
 }

}
Flow

Consumer

val myIntFlow: Flow<Int> =
myFlowGenerator()

myIntFlow.collect { value ->
println(value) }

3 2 1

Call collect on a flow

to read data from it.

The values 1, 2, and

3 are in the flow so

the collect trailing

lambda code will be

called on each of

those values.

1 goes first

followed by 2 then

followed by 3

Reading from a Flow

Reading from a Flow (Consumer)
 The collect function must be called on the Flow to read from it.

 A trailing lambda is passed to collect. This function is called each time a value
appears in the Flow.

val myIntFlow: Flow<Int> = myFlowGenerator()

myIntFlow.collect { value -> println(value) }

© 2024 Arthur Hoskey. All
rights reserved.

The lambda body is executed

for EVERY value in the Flow

(its applied to all values

coming through the flow)

fun myFlowGenerator(): Flow<Int> =

flow {

 for (i in 1..3) {

 emit(i)

 }

}

Flow variable

Call collect on the flow to

read data (cold flows need to

have collect called on them

before they can be used)

The myFlowGenerator

function returns a

Flow<Int>

(returns a flow instance)

Call myFlowGenerator to

get flow instance

IMPORTANT!!!

collect is a suspend function

and must be run in a

coroutine (not shown here)

Try It Out – Reading from a Flow

Try It Out - Reading from a Flow

 Put the following code in a view model (need to create the view model class):

val myIntFlow: Flow<Int> = myFlowGenerator()

fun runCollectOnFlow() {

 viewModelScope.launch {

 println("Call flow collect")

 myIntFlow.collect { value -> println(value) }

 }

}

fun myFlowGenerator(): Flow<Int> =

 flow {

 for (i in 1..3) {

 emit(i)

 }

 }

 Call runCollectOnFlow from a composable function (assumes viewModel has been
set):

viewModel.runCollectOnFlow()

Generate Flow with a Delay

Generate Flow with a Delay
 A delay is added before adding each num. This code was run in a ViewModel.

fun myFlowGenerator(): Flow<Int> = flow { // flow builder

 delay(1000)

 emit(1)

 delay(1000)

 emit(2)

 delay(1000)

 emit(3)

}

fun testFlow() {

 viewModelScope.launch {

 val myIntFlow: Flow<Int> = myFlowGenerator()

 myIntFlow.collect { value -> println(value) }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

After calling collect, values are

read when they appear in the Flow

(not all at once). There will be a

one second delay between

printing each number.

There is a delay before emitting

each number to simulate a long

running operation

Colllecting Flow Multiple Times

Collecting Flow Multiple Times

val myIntFlow: Flow<Int> = myFlowGenerator()

fun myFlowGenerator(): Flow<Int> = flow { // flow builder

 delay(1000)

 emit(1)

 delay(1000)

 emit(2)

 delay(1000)

 emit(3)

}

fun testFlow() {

 viewModelScope.launch {

 myIntFlow.collect { value -> println(value) }

 }

}

testFlow()

testFlow()

© 2024 Arthur Hoskey. All
rights reserved.

Call collect on the myIntFlow

member variable in this function

Could declare the flow

variable as a class member

variable (like in a ViewModel)

and initialize it once

Each call to testFlow will cause a separate call to collect.

Important! Each call to collect will cause the flow to emit

its whole sequence of values from beginning to end.

Flow Item Types

Flow Item Types

 A flow can have different types of items.

 The data type inside < > determines the item type.

 Flow can have whole collections as values.

 This means each value that comes through the flow is
a whole collection.

© 2024 Arthur Hoskey. All
rights reserved.

Takes Int

values

Flow<Int>

Takes String

values

Flow<String>

Takes List<Int> values

(each item is a whole list)

Flow<List<Int>>

Flow of List

Flow of List
 Items in a flow can be whole collections.

 The code below shows a flow that contains lists of Int.

 Each item in this flow is a whole list of Int.

fun myFlowGeneratorList() : Flow<List<Int>> = flow {

 emit(listOf(4, 7, 5, 9))

 emit(listOf(8, 1, 3, 2, 4))

 emit(listOf(5, 3, 7))

}

© 2024 Arthur Hoskey. All
rights reserved.

Each call to emit is passed

a whole list of numbers

Each item in the flow

is a whole list

Try It Out - Generate Flow of List

Try It Out - Generate Flow of List

 Put the following code in a view model (need to create the view model class):

val myListIntFlow: Flow<List<Int>> = myFlowGeneratorList()

fun myFlowGeneratorList() : Flow<List<Int>> = flow {

 emit(listOf(4, 7, 5, 9))

 emit(listOf(8, 1, 3, 2, 4))

 emit(listOf(5, 3, 7))

}

fun testFlowList() {

 viewModelScope.launch {

 myListIntFlow.collect { value -> println(value) }

 }

}

 Call testFlowList from a composable function (assumes viewModel has been set):

viewModel.testFlowList()

© 2024 Arthur Hoskey. All
rights reserved.

Each value in the flow is a

whole list (not one number)

Send three whole lists of

numbers to the flow

Each call to testFlowList will cause the flow of

List<int> to be emitted from beginning to end.

Output

[4, 7, 5, 9]

[8, 1, 3, 2, 4]

[5, 3, 7]

StateFlow

 Now on to StateFlow (hot)…

© 2024 Arthur Hoskey. All
rights reserved.

StateFlow

StateFlow (Hot Flow)

 A StateFlow represents one value (not a sequence of values).

 The one value that is stored can be updated over time.

 The one value can be a whole list of something. The list is treated as one
value though.

 When the value changes any consumers of this flow are notified.

 The value in the StateFlow must be initialized when this flow is created.

 A StateFlow is hot (it is usable immediately). The value in the StateFlow is
there and ready to use regardless of whether or not there are any
consumers.

 Good for representing UI state. The UI can observe it and update itself
when the value in the StateFlow changes.

© 2024 Arthur Hoskey. All
rights reserved.

StateFlow<Employee>
Stores one employee. For
example:
{ name="Rose",
 dept="IT",
 salary=100000
}

StateFlow<Int>
Stores one int. For
example:
555

StateFlow<List<Int>>
Stores one list of int. For
example:
(10,20,30)

This is one instance of a
List<Int> (not three Ints).

Example 1 - StateFlow - Set Value
(MutableStateFlow<Int>)

Example 1 - StateFlow - Set Value (MutableStateFlow<Int>)

 StateFlow and MutableStateFlow are defined in Kotlin libraries (not
Jetpack Compose).

 Use the value member variable to set the value in the state flow.

 Here are member variable declarations for a state flow that stores an Int:

var testStateFlow = MutableStateFlow(0)

 private set

© 2024 Arthur Hoskey. All
rights reserved.

StateFlow<Int>
Stores one int (value
changes from 0 to 555) :
0
555

// Set value in flow

testStateFlow.value = 555

Put the number 555 in the

state flow. The 0 value is

overwritten.

Declare a MutableStateFlow member

variable and make the set private.

A notification is sent out

when the value is

changed (for example,

code in the UI is notified)

Check next slide…

Example 1 - StateFlow - Collect Value
(MutableStateFlow<Int>)

Example 1 - StateFlow - Collect Value (MutableStateFlow<Int>)

 Use the collectAsState function to get the current state from the state
flow.

 collectAsState converts Kotlin state flow to Jetpack Compose state.

 collectAsState is a composable function so it must be called from inside
another composable function (cannot be called from the view model).

 Here is collection code for a composable function:

val num = viewModel.testStateFlow.collectAsState().value

© 2024 Arthur Hoskey. All
rights reserved.

StateFlow<Int>
Stores one int:
555

Call collectAsState on the flow. It returns a State<Int> type in this

case. Use the value member of that state object to get the num.

The value 555 is returned in this example and

put in the num variable (assuming that it was

set as shown on a previous slide)

num has type Int

555

Try It Out – Example 1 StateFlow

Try It Out – Example 1 StateFlow

 Put the following code in a view model (need to create the view model class):

var testStateFlow = MutableStateFlow(0)

 private set

fun setStateFlowValue(num:Int) {

 // Set value in flow

 testStateFlow.value = num

}

 Set and display the value of the StateFlow in a composable:

val viewModel = viewModel { MainScreenViewModel() }

val num = viewModel.testStateFlow.collectAsState().value

Column(modifier) {

 Text(num.toString())

 Button(onClick = { viewModel.setStateFlowValue(555) })

 { Text("Set Value to 555") }

}

© 2024 Arthur Hoskey. All
rights reserved.

Output

It should initially display 0

(default value in StateFlow). After

pressing the button, it should

automatically display 555.

Example 2 - StateFlow - Set Value
(MutableStateFlow<List<Int>>)

Example 2 - StateFlow - Set Value (MutableStateFlow<List<Int>>)

 This example uses a whole list as the one value being stored.

 Preferences DataStore, Room, and Firestore all use StateFlows where the
one value being stored is a list.

var testListStateFlow = MutableStateFlow(listOf(10, 20, 30))

 private set

© 2024 Arthur Hoskey. All
rights reserved.

StateFlow<List<Int>>
Stores one List<Int> :
(10,20,30)
(40,50,60)

// Set value in flow

testListStateFlow.value = listOf(40,50,60)

Put the list (40,50,60) in

the state flow variable.

The (10,20,30) list value is

overwritten.

The type of items is List<Int>. Pass in an empty

list as the initial value in the flow.

A notification is sent out

when the value is

changed (for example,

code in the UI is notified)

Check next slide…

Example 2 - StateFlow - Collect Value
(StateFlow<List<Int>>)

Example 2 - StateFlow - Collect Value (StateFlow<List<Int>>)

 Use the collectAsState function to get the current state from the state
flow.

 Here is collection code for a composable function:

val list = viewModel.testListStateFlow.collectAsState().value

© 2024 Arthur Hoskey. All
rights reserved.

StateFlow<List<Int>>
Stores one List<Int> :
(10,20,30)
(40,50,60)

Call collectAsState on the flow. It returns a

State<List<Int>> type. Use the value member of

that state object to get the list .

Collecting causes the value (40,50,60) to

be returned in this example and put in the

numList variable above (assuming that it

was set as shown on a previous slide)

list has type

List<Int>

(40,50,60)

Try It Out – Example 2 StateFlow

Try It Out – Example 2 StateFlow

 Put the following code in a view model (need to create the view model class):

var testListStateFlow = MutableStateFlow(listOf(10, 20, 30))

 private set

fun setStateFlowValue(list:List<Int>) {

 // Set value in flow

 testListStateFlow.value = list

}

 Set and display the value of the StateFlow in a composable:

val viewModel = viewModel { MainScreenViewModel() }

val list = viewModel.testListStateFlow.collectAsState().value

Column(modifier) {

 Text(list.toString())

 Button(onClick = { viewModel.setStateFlowValue(listOf(40,50,60)) })

 { Text("Set Value to list 40,50,60") }

}

© 2024 Arthur Hoskey. All
rights reserved.

Output

It should initially display

[10,20,30] (default value in

StateFlow). After pressing the

button, it should automatically

display [40,50,60].

StateFlow vs Normal Flow

StateFlow vs Normal Flow

 When collect is called on a normal flow, the consumer causes the producer to
generate ALL values from the beginning of the flow.

 When collecting a StateFlow, the consumer only gets the current value (and
subsequent values).

© 2024 Arthur Hoskey. All
rights reserved.

Normal Flow Producer
fun myFlowGenerator():
Flow<Int> = flow {
 for (i in 1..3) {
 emit(i)
 }
}

Flow

Normal Flow Consumer

Each call to collect will always
get all values from the
beginning of the flow. So, each
call to collect will receive 1, 2,
3.

StateFlow Producer
numMutableStateFlow.value = 1

numMutableStateFlow.value = 2
// Consumer collects now…
numMutableStateFlow.value = 3

Flow

StateFlow Consumer

If collecting AFTER 2 is assigned
in the producer, the consumer
will only see the values from the
StateFlow 2,3.

3 2 1

3 2 1

Collecting after 2 is put in

flow means only 2,3 will be

seen by the consumer

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: Normal List Collection
	Slide 4: Generate and Use a Normal List
	Slide 5: Generate Normal List with a Delay
	Slide 6: Kotlin Flow
	Slide 7: Hot vs Cold Flow
	Slide 8: Flow
	Slide 9: Adding Data to a Flow
	Slide 10: Function to Generate a Flow
	Slide 11: Collecting Data from a Flow
	Slide 12: Reading from a Flow
	Slide 13: Try It Out – Reading from a Flow
	Slide 14: Generate Flow with a Delay
	Slide 15: Colllecting Flow Multiple Times
	Slide 16: Flow Item Types
	Slide 17: Flow of List
	Slide 18: Try It Out - Generate Flow of List
	Slide 19: StateFlow
	Slide 20: StateFlow
	Slide 21: Example 1 - StateFlow - Set Value (MutableStateFlow<Int>)
	Slide 22: Example 1 - StateFlow - Collect Value (MutableStateFlow<Int>)
	Slide 23: Try It Out – Example 1 StateFlow
	Slide 24: Example 2 - StateFlow - Set Value (MutableStateFlow<List<Int>>)
	Slide 25: Example 2 - StateFlow - Collect Value (StateFlow<List<Int>>)
	Slide 26: Try It Out – Example 2 StateFlow
	Slide 27: StateFlow vs Normal Flow
	Slide 28: End of Slides

